Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nian-Yu Huang, ${ }^{a}$ Ming-Wu Ding, ${ }^{\text {b }} *$ Zai-Gang Luo, ${ }^{\text {a }}$ Na Zuo, ${ }^{\text {a }}$ Xiao-Hua Zeng ${ }^{\text {a }}$ and Hong-Wu He ${ }^{\text {a }}$
${ }^{\text {a Key }}$ Laboratory of Pesticides and Chemical Biology of the Ministry of, Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
ding5229@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.096$
Data-to-parameter ratio $=9.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(4-Methoxyphenoxy)-1,9-diphenyl-1,9-dihydropurin-6-one

The title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$, has a planar bicyclic imidazolo[5,4- d]pyrimidine core. The planes of the phenyl and methoxyphenoxy substituents form substantial ($>30^{\circ}$) dihedral angles with the imidazolopyrimidine plane. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules into infinite chains running along the a axis of the crystal structure.

Comment

Due to the fundamental role of purines in nucleic acid chemistry and cellular biochemistry, the potential use of purine derivatives as chemotherapeutic agents in the treatment of malignant diseases was investigated as early as the 1930s (Lustig \& Wachtel, 1935). Substituted guanine derivatives may be used as potential biologically active compounds or pharmaceuticals (Xu et al., 1995). In recent years, we have been developing methods for the synthesis of derivatives of heterocycles via the aza-Wittig reaction (Ding et al., 2004). In this context, we have synthesized the title compound, 2-(4-methoxyphenoxy)-1,9-diphenyl-1,9-dihydropurin-6-one, (I); here we report its crystal structure.

(I)

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and bond and torsion angles are listed in Table 1. The bicyclic imidazolo[5,4-d]pyrimidine system is planar within $0.012 \AA$. The planes of the aromatic rings C2-C7, C9C14 and C19-C24 form dihedral angles of 55.8 (1), 67.9 (1) and $34.2(2)^{\circ}$, respectively, with the least-squares plane of the imidazolopyrimidine system; the $\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 5$ and $\mathrm{C} 8-$ $\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6$ torsion angles are $18.8(4)$ and $117.7(3)^{\circ}$, respectively.

Received 29 November 2005
Accepted 23 January 2006

Figure 1
View of the molecular structure of the title compound, showing the atomlabeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram showing the crystal structure of the title compound. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) link the molecules into infinite chains running along the a axis of the crystal structure (Fig. 2).

Experimental

Ethyl 5-[(phenylimino)methyleneamino]-1-phenylimidazole-4carboxylate (2 mmol), 4-methoxyphenol (0.25 g) and potassium carbonate $(0.1 \mathrm{~g})$ were dissolved in dry acetonitrile (30 ml). The solution was stirred for 4 h at 310 K . The mixture was then filtered and the solvent was removed from the filtrate under reduced pressure. The solid residue was recrystallized from anhydrous ethanol
(10 ml) to produce the title compound, (I), in a yield of 83% (m.p. 470 K). Suitable crystals were obtained by vapor diffusion of dichloromethane into an ethanol solution at room temperature. MS (EI 70 eV) $m / z(\%): 410$ (100), 379 (3), 303 (5), 291/287 (94/98), 275 (64), 231 (18), 76 (84). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $7.98(s, 1 \mathrm{H}, \mathrm{C}-$ H), 7.51-7.55 ($m, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 7.37-7.41 ($m, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 6.83-7.05 ($m, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), $3.79(s, 1 \mathrm{H}, \mathrm{C}-\mathrm{H})$.

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$
$M_{r}=410.42$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.0020(7) \AA$
$b=9.7745(8) \AA$
$c=25.255(2) \AA$
$V=1975.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 2809 reflections

$$
\theta=2.2-21.4^{\circ}
$$

$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
12700 measured reflections
2677 independent reflections
1958 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-10 \rightarrow 10$

$$
k=-12 \rightarrow 12
$$

$$
l=-23 \rightarrow 32
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.096$
$S=0.96$
2677 reflections
281 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0474 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C8-N1	1.300 (3)	C16-C17	1.366 (3)
$\mathrm{C} 8-\mathrm{N} 2$	1.374 (3)	C16-N3	1.386 (3)
C8-O2	1.340 (3)	C17-N1	1.362 (3)
C9-N2	1.451 (3)	C17-N4	1.375 (3)
C15-N2	1.427 (3)	C18-N3	1.306 (3)
C15-O3	1.220 (3)	C18-N4	1.379 (3)
C15-C16	1.428 (3)	C19-N4	1.434 (3)
N1-C8-O2	122.4 (2)	C16-C17-N4	106.0 (2)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 2$	111.1 (2)	N3-C18-N4	114.1 (2)
$\mathrm{O} 3-\mathrm{C} 15-\mathrm{N} 2$	120.5 (2)	C8-N1-C17	111.75 (19)
O3-C15-C16	128.5 (2)	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 15$	122.7 (2)
N2-C15-C16	110.99 (19)	C8-N2-C9	120.0 (2)
C17-C16-N3	111.5 (2)	C15-N2-C9	117.23 (18)
C17-C16-C15	120.0 (2)	C18-N3-C16	103.2 (2)
N3-C16-C15	128.4 (2)	C17-N4-C18	105.07 (19)
N1-C17-C16	128.0 (2)	C17-N4-C19	130.3 (2)
N1-C17-N4	126.0 (2)	C18-N4-C19	124.6 (2)
O3-C15-C16-C17	-179.5 (2)	C14-C9-N2-C8	111.6 (3)
O3-C15-C16-N3	1.4 (4)	C10-C9-N2-C15	110.8 (3)
N2-C15-C16-N3	-178.9 (2)	C14-C9-N2-C15	-68.5 (3)
N3-C16-C17-N1	179.3 (2)	C20-C19-N4-C17	143.9 (3)
C15-C16-C17-N1	0.0 (4)	C24-C19-N4-C17	-37.7 (4)
N3-C16-C17-N4	-0.5 (3)	C20-C19-N4-C18	-32.8 (4)
C15-C16-C17-N4	-179.8 (2)	C24-C19-N4-C18	145.6 (3)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 17$	-179.3 (2)	N1-C8-O2-C5	18.8 (4)
$\mathrm{N} 4-\mathrm{C} 17-\mathrm{N} 1-\mathrm{C} 8$	179.4 (2)	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 5$	-161.1 (2)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 15$	179.5 (2)	C6-C5-O2-C8	117.7 (3)
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8$	-69.1 (3)		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.58	$3.315(3)$	137

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{3}{2},-z+2$.
The H atoms were placed in calculated positions and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (No. 2003CB114400), as well as support from the National Natural Science Foundation of China (No. 20372023).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, M. W., Yang, S. J. \& Zhu, J. (2004). Synthesis, 1, 75-79.
Lustig, B. \& Wachtel, H. (1935). Z. Krebsforsch. 41, 468-482.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Xu, H. Y., Maga, G., Focher, F., Smith, E. R., Spadari, S., Gambino, J. \& Wright, G. E. (1995). J. Med. Chem. 38, 49-57.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

